Ультрафиолетовый спектр и его влияние на развитие растения

Введение

В естественных условиях растения постоянно находятся под воздействием ультрафиолетового излучения. В спектре солнечного света 7% энергии приходится на ультрафиолет. Это длины электромагнитных волн в диапазоне 200-400 нм. От наиболее к наименее жесткому ультрафиолет подразделяют на 3 вида — С, В и А. С областями излучения 100-280 нм, 280-320 нм, 320-400 нм соответственно.

УФ-С — губительный и полностью поглощается атмосферными газами. УФ-В также поглощается атмосферой, но небольшая его часть все же достигает поверхности земли. И УФ-А почти беспрепятственно проходит сквозь атмосферу, воздействуя в дальнейшем на растения и другие объекты живого мира.

Восприятие ультрафиолета

За обработку световых сигналов в ультрафиолетовом спектре отвечают сразу несколько фоторецепторов. Уже знакомые из предыдущих статей — фитохром, криптохром, фототропин, а также открытый относительно недавно рецептор URV8. Первые 3 типа рецепторов имеют несколько пиков восприятия светового излучения. То есть каждый из них способен реагировать на разные длины волн.

С UVR8 ситуация иная. Как видно на графике, он сосредоточен только на УФ-В. Со стороны растения такое решение обосновано, ведь высокоэнергетическое излучение УФ-В имеет серьезное воздействие практически на все организмы. Благодаря информации, полученной с помощью UVR8, растение способно запускать ответные реакции для защиты и восстановления от избыточного ультрафиолетового излучения.
Retseptory
Пики поглощения спектров фитохромом, криптохромом, фототропином и URV8. 
Фитохром, рецептор красного света, также способен улавливать УФ-В. Но для запуска генетических программ это имеет меньшее значение в сравнении с действием UVR8. Это демонстрирует опыт, где мутантные растения, лишенные данного рецептора, росли при естественном освещении с хлоротичными и скрученными листьями. За восприятие УФ-А, который также участвует в фотоморфогенезе, отвечают рецепторы синего света: криптохром и фототропин.

Интенсивность фотосинтеза

Растения могут существенно различаться по восприимчивости к ультрафиолету. Повреждение ДНК, деградация белков, участвующих в фотосинтезе, нарушение работы хлоропластов, разрушение хлорофилла и каротиноидов — такие последствия характерны для излучения в области 280-400 нм. Но не все так однозначно. Результат зависит от мощности и продолжительности воздействия ультрафиолета. И ряд экспериментов показывает, в каких условиях возможно получить дополнительный синтез вторичных метаболитов без вреда для фотосинтеза и товарного вида продукции.

В исследовании, опубликованном в журнале New phytologist, показано, как небольшие дозы ультрафиолетового излучения не провоцировали угнетения скорости фотосинтеза у растений арабидопсиса. После 20 дней от всходов арабидопсис, выращиваемый в теплице, подвергли воздействию дополнительного УФ-В в течение 12 дней по 2 часа. Мощность коротковолнового излучения составляла 1.7 Вт/м2. Авторы работы отмечают, что для существенного торможения скорости фотосинтеза нужно воздействовать на растения ультрафиолетом по 4 часа в день с мощностью 6 Вт/м2. Таким образом исследователи избежали негативного влияния ультрафиолета на фотосинтез и при этом увеличили производство вторичных метаболитов.

Похожих результатов удалось добиться российским ученым с листовым салатом. Его также выращивали в теплице и после 24 дней от всходов начали воздействовать ультрафиолетом на растения. В этом опыте интенсивность УВ-В была выше, чем в зарубежном — 2.7 Вт/м2. Но при этом существенно различалась продолжительность облучения — от 2 до 15 минут в день.
UF rus2
"1"- контроль, "2"- дополнительная УФ обработка.
По накоплению надземной биомассы можно косвенно судить об изменениях скорости фотосинтеза. И среди тестируемых сортов салата не было обнаружено статистически значимых различий. Эти показатели видны на графике ниже, где “1”- контроль, “2”- дополнительная УФ обработка.

Влияние UV на развитие растения

Ультрафиолет по сути своей стрессор для живых организмов. И один из механизмов, который используют растения для защиты — изменение своей морфологии. В общих чертах это проявляется в уменьшении размеров растения, площади его листьев, количества устьиц, длины междоузлий, а также стимуляции пазушного ветвления. При этом может увеличиваться толщина как самих листьев, так и их защитного воскового слоя. 

Также есть данные, что умеренные дозы коротковолнового излучения стимулируют производство хлорофиллов. По всей видимости это компенсаторный механизм в ответ на сокращающуюся площадь листа. На графике снизу ромбовидными фигурами показана зависимость между интенсивностью ультрафиолетового воздействия и количеством хлорофилла у арабидопсиса.
Интересно, что ультрафиолетовые лучи оказывают не просто ингибирующее воздействие на ростовые процессы, но приводят к комплексным изменениям в росте растения. В упомянутом ранее исследованиис арабидопсисом ученые отметили существенные трансформации на стадии цветения. Вместе с уменьшением высоты растений, изменилось количество цветущих стеблей. Такая закономерность сохранялась и в опытах на других культурах.

Авторы работы связывают это явление с изменениями метаболизма гормона ауксина. Подобной реакции можно добиться прищипыванием верхушки побега, которое также сопровождается изменениями в работе этого гормона. Но прищипывание так или иначе является стрессором. Для культур с коротким жизненным циклом важно выбирать наименее травмирующие способы формирования растения. Умеренные дозы ультрафиолета вносят вклад в развитие организма и при этом не вызывают у него стресс. Поэтому применение коротковолнового излучения может оказаться перспективным решением.

Синтез вторичных метаболитов

Вторичные метаболиты не являются жизненно необходимыми соединениями для растений. Их производство требует ресурсов, тратить которые организм не станет без серьезной причины. А между тем такие соединения несут в себе пищевую и лекарственную ценность для человека. Поэтому важно создавать такие условия выращивания, при которых растение увеличивает синтез вторичных метаболитов без потери общей производительности.

В ответ на облучение ультрафиолетом в поверхностном слое растительной ткани увеличивается синтез веществ, которые препятствуют проникновению пагубных лучей. Синтезируемые вещества представлены в основном фенольными и флавоноидными соединениями, которые имеют широкое применение в медицине. На их основе изготавливают противомикробные, противовоспалительные, желчегонные и другие виды препаратов. Употребляя фенольные соединения с пищей, мы получаем антиоксидантный и противоопухолевый эффект. Что важно, для запуска программы по синтезу защитных веществ не обязательно подвергать растение реальной угрозе. В тех же экспериментах с арабидопсисоми листовым салатом показано, что повышенный синтез целевых соединений возможен при нормальном функционировании всего организма.

Пара слов о каннабисе

Другой зарубежный эксперимент также показал преимущества ультрафиолета в этой области. Добавление коротковолнового излучения в общий поток света увеличило концентрацию каннабиноидов в соцветиях каннабиса. В опыте было 3 варианта освещения: натриевая лампа высокого давления и 2 светодиодных облучателя.

Под газоразрядной лампой средний урожай сухих соцветий был наибольшим — 26.6г. Тогда как под светодиодными облучателями AP673L и NS1 23.1 и 22.8 г соответственно. Но по содержанию как общего количества, так и отдельно взятых каннабиноидов вариант с натриевой лампой оказался последним. В процентном соотношении на графиках показано как меняется количество различных каннабиноидов по вариантам.
UF kanna
Спектральные свойства и интенсивность света (в PAR, диапазон 400-700 нм) при каждой обработке светом. 
Интересно заметить, что облучатель AP673L не имеет в спектральном составе ультрафиолетового света. И тем не менее он обходит ДНаТ по уровню влияния на синтез каннабиноидов. Это можно объяснить тем, что у светодиодного светильника больше доля синего в сравнении с газоразрядной лампой — 14% против 8%. В статье про синий спектр уже упоминалось явление, при котором излучение 400 нм может запускать в растении фотопротекторную программу. То есть синий свет может работать отчасти как ультрафиолет, стимулируя синтез защитных соединений.

Заключение

Ультрафиолетовый спектр входит в состав солнечного света, и растения в открытом грунте постоянно находятся под его воздействием. Поэтому в растительном организме существуют системы по восприятию и защите от коротковолнового излучения. Эта защита проявляется на разных уровнях — меняется морфология культуры и биосинтез веществ. И правильное включение ультрафиолета в общий спектр может увеличить синтез целевых соединений без негативного влияния на развитие растения.

Поможем со светом для ваших растений

Наши фитосветильники с УФ спектром
Товар добавлен в корзину
Оформить заказ

Смотрите также
от